Genetics of PQQ
Genes involved in PQQ synthesis have been cloned from Acinetobacter calcoaceticus (Goosen et al., 1989), K. pneumoniae (Meulenberg et al., 1992), Pseudomonas fluorescens CHA0 (Schnider et al., 1995), Methylobacterium organophilum DSM 760 (Biville et al., 1989) and M. extorquens AM1 (Morris et al., 1994). In A. calcoaceticus, five pqq genes were identified and sequenced, designated IV, V, I, II and III (Goosen et al., 1989). In K. pneumoniae, genes analogous to those were identified and designated pqqABCDE, and in addition, a sixth gene was found immediately downstream of pqqE, designated pqqF (Meulenberg et al., 1992) In Methylobacterium strains, a five gene cluster (designated pqqDGCBA) was identified by complementation analysis (Biville et al., 1989; Morris et al., 1994), and sequence data from M. extorquens AM1 showed that the first three of these genes (pqqDGC) were analogous to pqqABC of K. pneumoniae (Morris et al., 1994). In P. fluorescens, genes analogous to pqqFAB of K. pneumoniae have also been sequenced (Schnider et al., 1995).
Figure 14
Table 3: Percentage similarities between pqqBCDE genes of different bacteria
(Source: Felder et al., 2000)
In all four sequences, a small gene is present that encodes a peptide of 22-29 amino acids, which contains conserved tyrosine and glutamate residues. Since tyrosine and glutamate are the probable precursors for PQQ synthesis (Van Kleef and Duine, 1988; Houck et al., 1991), it has been proposed that this peptide is the precursor from which PQQ is synthesized (Goosen et al., 1992). However, the biochemical steps of PQQ synthesis are still unknown. Velterop et al., (1995) examined PQQ synthesis in vitro.
A series of experiments was carried out in which cell extracts of Escherichia coli containing all but one of the Pqq proteins were combined with those containing the missing Pqq protein. PQQ was produced in only one of these sets, that involving PqqC. E. coli cells containing a clone encoding all but the PqqC protein apparently produced an intermediate of PQQ, found both in the culture medium and in the cells. However, the mount of the intermediate was low and it was unstable (Velterop1995).
{image:14}
(Source: Felder et al., 2000)
Genes involved in PQQ biosynthesis have been cloned from several organisms. Five A. calcoaceticus pqq genes, pqqIV, V, I, II, and III (Goosen et al., 1989, Goosen et al., 1987), and six K. pneumoniae pqq genes, pqqA, B, C, D, E, and F (Mellenberg 1990, Mellenberg et al., 1992), were cloned and sequenced. Comparison of the deduced amino acid sequences showed that the proteins encoded by the first five genes of the K. pneumoniae pqq operon (pqqABCDE) show similarity to the proteins encoded by the corresponding A. calcoaceticus genes (49 to 64% identical amino acid residues). The K. pneumoniae pqqF gene encodes a protein that shows similarity to E. coli protease III and other proteases (Mellenberg et al., 1992), but its equivalent has not yet been found in A. calcoaceticus. Recently, three M. extorquens AM1 pqq genes, pqqD, G, and C, have been cloned and sequenced (Morris et al., 1994); pqqC was only partly sequenced. The encoded proteins showed similarity to the K. pneumoniae PqqA, B, and C proteins and the A. calcoaceticus PqqIV, V, and I proteins, respectively. Four additional pqq genes have been detected in M. extorquens by isolation of mutants and complementation studies. From similar studies, six (possibly seven) pqq genes have been postulated in M. organophilum DSM760 (Biville, 1989). Finally, a DNA fragment cloned from Erwinia herbicola contained a gene encoding a protein similar to K. pneumoniae PqqE and A. calcoaceticus PqqIII (Liu, et al., 1992). Except for the K. pneumoniae PqqF protein, none of the Pqq proteins shows similarity to other proteins in the database. One of the pqq genes is small and may encode a polypeptide of 24 amino acids (PqqIV, A. calcoaceticus), 23 amino acids (PqqA, K. pneumoniae), or 29 amino acids (PqqD, M. extorquens AM1). Interestingly, these putative polypeptides contain conserved glutamate and tyrosine residues (positions 15 and 19, respectively, in K. pneumoniae and the equivalents in A. calcoaceticus and M. extorquens). Those residues have been suggested previously as precursors in PQQ biosynthesis. Replacement of Glu-16 by Asp and Tyr-20 by Phe in A. calcoaceticus PqqIV abolished PQQ biosynthesis. A frame shift in K. pneumoniae pqqA had the same result (Melulenberg et al., 1992). It was suggested that the PqqA/PqqIV polypeptide might act as a precursor in PQQ biosynthesis (Goosen 1989; Goosen 1992; Melulenberg et al., 1992).
In what way could a 24-amino-acid polypeptide be involved in PQQ synthesis? Its small size makes a direct enzymatic function in the conversion of glutamate and tyrosine to PQQ unlikely. A regulatory role of the gene IV product in the expression of the other pqq genes is also improbable, since previous experiments already showed that gene IV is also essential for PQQ synthesis in an E. coli strain. In these experiments, the expression of the pqq genes from A. calcoaceticus was under control of the E. coli lac promoter, which excludes a transcriptional control of these genes by the gene IV peptide. Therefore, it is likely that the small polypeptide has a more direct role in synthesis of the coenzyme (Velterop1995).
Seven genes, called pqq genes, are required for PQQ biosynthesis in M. extorquens AM1, but their functions are unknown (Moris et al., 1994; Nunn and Lidstrom 1986a, Nunn and Lidstrom 1986b). The pqqD gene encodes a small polypeptide of 29 amino acids containing conserved tyrosine and glutamate residues separated by three amino acids (Moris et al., 1994). Tyrosine and glutamate have been shown to be the precursors of PQQ biosynthesis, and it has been proposed that the peptide might serve as the substrate for PQQ biosynthesis (Goosen, 1992; Houck, 1991; Meulenberg1992).
References
r-0. Abd-Alla, M.H., 1994. Phosphatases and the utilization of organic phosphorus by Rhizobium leguminosarum biovar viceae. Lett. Appl. Microbiol. 18: 294–296.
r-1.
r-2. Alagawadi, A. R. and A. C. Gaur, 1992. Inoculation of Azospirillum brasilense and phosphate-solubilizing bacteria on yield of sorghum [Sorghum bicolor (L.) Moench] in dry land. Trop.Agric. 69, 347–350
r-3. Ameyama, M., M. Nonobe, E. Shinagawa, K. Matsushita, K. Takimoto and O. Adachi, 1986. Purification and characterization of the quinoprotein d-glucose dehydrogenase apoenzyme from Escherichia coli. Agric Biol Chem 50: 49-57.
r-4. Antoun, H. and J.W. Kloepper, 2001. Plant Growth promoting rhizobacteria. Encyclopedia of Genetics. Brenner, S. and J.F. Miller, (Eds in chief) Academic Press: 1477-1480.
r-5. Antoun, H., C. J. Beauchamp, N. Goussard, R. Chabot and R. Lalande, 1998. Potential of Rhizobium and Bradyrhizobium species as growth promoting bacteria on non-legumes: effect on radishes (Raphanus sativus L.). Plant Soil 204: 57–67
r-6. Azcon-Aguilar, C., V. Gianinazzi-Pearson, J. F. Fardeau, S. Gianinazzi, 1986. Effect of vesicular-arbuscular mycorrhizal fungi and phosphate solubilizing bacteria on growth and nutrition of soybean in a neutral calcareous soil amended with 32P-45Ca-tricalcium phosphate. Plant and Soil. 96: 3–15.
r-7.
r-8. Alghazali, R., S. H. M. Kmuhammad and Al-gzawl, 1986. Some observations on P solubilization by aerobic microorganisms isolated d from sediments of Al Khair River Baghdad (Iraq). J Bio. Sci.Res.47:157-72.
r-9. Anderson, G., 1980. Assessing organic phosphorus in soils. In The Role of Phosphorus in Agriculture (Khasawneh, F.E., E.C. Sample and E.J. Kamprath, eds). Madison, USA: Amer. Soc. Agron. 411-432.
r-10.
r-11. Bartel, B. 1997. Auxin biosynthesis. Ann. Rev. Plant Physiol. Plant Mol. Biol. 48:51–66.
r-12. Belimov, A. A., A. P., .Kojemiakov and C. V., Chuvarliyeva, 1995. Interaction between barley and mixed cultures of nitrogen fixing and phosphate-solubilizing bacteria. Plant Soil. 173:29–37.
r-13. Babu-Khan, S., T.C Yeo, W.L. Martin, M.R. Duron, R.D. Rogers and A.H. Goldstein, 1995. Cloning of a mineral phosphate-solubilizing gene from Pseudomonas cepacia. Appl. Environ. Microbiol. 61: 972-978.
r-14.
r-15. Banik, S. and B. K. Dey, 1982. Available phosphate content of an alluvial soil is influenced by inoculation of some isolated phosphate solubilizing microorganisms Plant Soil. 69: 353-364.
r-16. Barber, S.A., 1984. Soil Nutrient Bioavailability: A Mechanistic Approach. John Wiley, New York
r-17. Beever, R. E. and D. J. W., Burns, 1980. Phosphorus uptake, storage and utilization by fungi. Advances in Botanical Research. 8:127-219.
r-18. Bossier,P,PM, Hofte and Verstrate1988.Adv.Microbial Eco.10:385-413.
r-19. Burgstaller, W. and F. Schinner, 1993. Leaching of metals with fungi. J. Biotechnol. 27: 91-116.
r-20. Chabot, R., C. J. Beauchamp, J. W. Kloepper and H. Antoun, 1998. Effect of phosphorous on root colonization and growth promotion of maize by bioluminescent mutants of phosphate solubilizing Rhizobium leguminosarum biovar. Phaseoli. Soil Biol. Biochem. 30:1615–1618.
r-21. Choi, O., K. Jinwoo, K. Jung-Gun, J. Yeonhwa, J. S. Moon, C. S. Park and I. Hwang, 2008. Pyrroloquinoline Quinone Is a Plant Growth Promotion Factor Produced by Pseudomonas fluorescens B161. Plant Physiol. 146: 657–668.
r-22. Cuningham , J. E. and C. Kuiak, 1992. Production of citric and oxalic acid and solubilization of calcium phosphate by penicillium billai. App. Environ. Microbial. 58:1451-1458.
r-23. Dalal, R. C., 1977. Soil organic phosphorus. Adv. Agron. 29:83–117.
r-24. Davies, P. J. 1995. The plant hormone concept: concentration, sensitivity and transport, 13–18. In P. J. Davies (ed.), Plant hormones: Physio.,Biochem, and Mole. Boil. Kluwer Academic Publishers, Dordrecht,The Netherland
r-25. Davison, J., 1988. Plant beneficial bacteria. Bio/Technology. 6: 282–286.
r-26. DeWeger, L. A., A. J. Vander Bij, L. C. Dekkers, M. Simons, C. A. Wijffelman and B. J. J. Lugtenberg, 1995. Colonization of the rhizosphere of crop plants by plant-beneficial Pseudomonads. FEMS Microbiol. Ecol. 17:221–228.
r-27. Dobbelaere, S., J. Vanderleyden, Y. Okon, 2003. Plant growth promoting effects of diazotrophs in the rhizosphere. Crit. Rev. Plant Sci. 22: 107–149
r-28.
r-29. Dighton, J. and L. Boddy, 1989. Role of fungi in nitrogen, phosphorus and sulfur cycling in temperate forest ecosystems. In Nitrogen, Phosphorus and Sulfur Ultilization by Fungi. (L. Boddy, R. Marchant and D. Read. Eds). Cambridge University Press, Cambridge.
r-30. Duine J.A., 1999. The PQQ story. Journal of Bioscience and Bioengineering. 88:231-236.
r-31. Duine, J. A., 1991. Quinoproteins: enzymes containing the quinonoid cofactor pyrroloquinoline quinone, topaquinone or tryptopha tryptophan quinone. Eur J Biochem. 200:271-284.
r-32. Duro A.F. and R. Serrano, 1981. Inhibition of succinate production during yeast fermentation by deenergization of the plasma membrane. Curr. Microbiol. 6: 111-113.
r-33. Ehrlich H. L., 1990. Geomicrobial processes. A physical and biochemical overview. In Geomicrobiology, 2nd Ed.Marcel Dekker.
r-34. Fernández C., R. Novo, V. Microbiana, E. Suelo, 1988. II. La Habana: Editorial Pueblo y Educación. fibroblasts. Life Sci 52: 1909–1915
r-35. Fasim, F., N. Ahmed, R. Parsons and G. M Gadd, 2002. Solubilization of zinc salts by bacterium isolated by the air environment of tannery. FEMS Microbiol. Lett. 213:1-6.
r-36. Gaur, A. C. and S. Gaind, 1999. Phosphate solubilizing microorganisms-An overview. Agromicrobes. Current trends in life sciences, Today and tomorrows publishers, New Delhi. India. 23:151-164.
r-37. Glick, B.R., 1995a. The enhancement of plant growth by free living bacteria. Can. J. Microbiol. 41:109–117.
r-38. Glick, B. R., D. M. Penrose, J. Li, 1998. A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J. Theor. Biol. 190: 63–68.
r-39. Goldstein, A. H., T. Lester, J. Brown, 2003. Research on the metabolic engineering of the direct oxidation pathway for extraction of phosphate from ore has generated preliminary evidence for PQQ biosynthesis in Escherichia coli as well as a possible role for the highly conserved region of quinoprotein dehydrogenases. Biochimica Biophysica Acta. 1647: 266– 271.
r-40. Goldstein, A. H., S. T. Liu, 1987. Molecular cloning and regulation of a mineral phosphate solubilizing gene from Erwinia herbicola. Bio/Technology. 5:72–74.
r-41. Goldstein, A. H., 1994. Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous mineral phosphates by gram negative bacteria. In: Torriani-Gorni, A., E. Yagil, S. Silver, eds. Phosphate in Microorganisms: Cellular and Molecular Biology. ASM Press, Washington, DC. 197–203
r-42. Goldstein, A. H., 1986. Bacterial solubilization of mineral phosphates: historical perspective and future prospects. Am. J. Altern. Agric. 1:51–57.
r-43.
r-44. Gadd, G.M. 1993. Interactions of fungi with toxic metals. New Phytologists, 24:25-60.
r-45. Gadd, G.M. 1999. Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv. Microb. Physiol. 41:48–92.
r-46. Gerhardson, B., 2002. Biological substitutes for pesticides. Trends Biotechnol. 20:338–343.
r-47. Goebel, E. M. and N. R. Krieg, 1984. Fructose catabolism in Azospirillum
brasilense and Azospirillum lipoferum. J. Bacteriol. 159:86–92.
r-48. Halder, A. K., P. K. Chakrabartty, 1993. Solubilization of inorganic phosphate by Rhizobium. Folia Microbiol. 38: 325–30.
r-49. Halder, A. K., A. K. Mishra, P. Bhattacharyya, P. K. Chakrabartty, 1990. Solubilization of rock phosphate by Rhizhobium and Bradyrhizobium, J. Gen. Appl. Microbiol. 36: 81–92.
r-50.
r-51. Harley, J. L., Smith, S. E., 1983. Mycorrhizal symbiosis. London, New York: Academic Press.
r-52. Hughes, M.N. and R.K. Poole, 1991. Metal speciation and microbial growth-the hard and soft facts. J. Gen. Microbiol. 137:725-734.
r-53. Hodge, A. 2000. Microbial ecology of the arbuscular mycorrhiza.
FEMS Microbiol. Ecol. 32:91-96.
r-54. Hommes, R. W. J., P. W. Postma, O. M. Neijssel, D. W. Tempest, P. Dokter and J. A. Duine, 1984. Evidence for a glucose dehydrogenase apo-enzyme in several strains of Escherichia coli. FEMS Microbiol. Lett. 24:329- 333.
r-55. Hommes, R. W. J., W. A. M. Loenen, O. M. Neijssel and P. W. Postma, 1986. Galactose metabolism in gal mutants of Salmonella typhimurium and Escherichia coli. FEMS Microbiol Lett. 36:187-190.
r-56. Houck, D. R., J. L. Hanners and C. J. Unkefer, 1991. Biosynthesis of pyrroloquinoline quinone. Biosynthetic assembly from glutamate and tyrosine. J. Am. Chem. Soc. 113:3162-3166.
r-57. Idriss, E. E. S., O. Makarewicz, A. Farouk, K. Rosner, R. Greiner, H. Bochow, T. Richter and R. Borriss, 2002. Extracellular phytase activity of Bacillus amyloliquefaciens FZB 45 contributes to its plant growth promoting effect. Microbiol. 148:2097-2109
r-58. Igual, J. M., A. Valverde, E. Cervantes, E. Velásquez, 2001.Phosphate solubilizing bacteria as inoculants for agriculture: use of updated molecular techniques in their study. Agronomie. 2:561–568.
r-59. Illmer, P. and F. Schineer, 1992. Solubilization of insoluble phosphates by microrganisms isolated from forest soils. Soil biol. biochem. 24:389-395.
r-60. Illmer P. and F. Schineer, 1995. Solubilization of inorganic calcium phosphate solubilization mechanisms. Soil Biol Biochem. 27:257–263.
r-61. Jones, D.L., 1998. Organic acids in the rhizosphere a critical review. Plant Soil
r-62. Jones R.P., and G. M. Gadd. 1990 Ionic nutrition of yeast physiological mechanisms involved and implications for biotechnology. Enzyme Microbial Technol 12:1-17.
r-63. Kapoor ,K.K M. M. Mishra andKKukerja.1989.Phosphate solubilization by soil microorganisms. Ind. J. microbial. 129:119-127.
r-64. Karcz W. and Z. Burdach 2002. A comparison of the effects of IAA and 4-Cl-IAA on growth, proton secretion and membrane potential in maize coleoptile segments. J. Exp. Bot 53:1089–1098.
r-65. Kasahara, T. and T. Kato, 2003. Nutritional biochemistry: A new redox-cofactor vitamin for mammals. Nature 422: 832-836.
r-66. Kim, K.Y., D. Jordan, H. B. Krishnan, 1997. Rahnella aqualitis, bacterium isolated from soybean rhizosphere, can solubilize hydroxyapatite. FEMS Microbiol. Lett. 153: 273–277.
r-67. Konings, W.N., 1985. Generation of metabolic energy by end-product efflux. Trends Biochem. Sci. 10: 317-319.
r-68. Krishnaraj, P.U. and A.H Goldstein, 2001. Cloning of a Serratia marcescesns DNA fragment that induces quinoprotein glucose dehydrogenase mediated gluconic acid production in Escherichia coli in the presence of stationary phase Serratia marcescens. FEMS Microbiol. Lett. 205: 215– 220.
r-69. Kpomblekou, A. and M. A. Tabatabai, 1994. Effect of organic acids on release of phosphorus from phosphate rocks. Soil Sci. 158:442–453.
r-70. Kucey, R. M. N., 1983. Phosphate solubilizing bacteria and fungi in various cultivated and virgin Alberta Soil. Can. J. Soil Sci. 63: 671-678.
r-71. Kucey, R. M. N., 1988. Effect of Penicillium bilaji on the solubility and uptake of P and micronutrients from soil by wheat. Can. J. Soil Sci. 68:261– 270.
r-72. Kucey, R. M. N., H. H. Jenzen and M. Leggett, 1989. Microbially mediated increases in plant available phosphorus. Adv. Agron. 42: 199-228.
r-73. Kundu, B. S. and A. C. Gaur, 1984. Rice response to inoculation with N2-fixing and P-solubilizing microorganisms. Plant Soil. 79:227–234
r-74. Lapeyrie, F., J. Ranger and D. Varelles, 1991. Phosphate solubilizing activity of ectomycorrhizal fungi in vitro. Canadian J. of Bot. 69:342-346.
r-75. Liu, T.S., L.Y. Lee, C. Y. Tai., C. H. Hung, Y. S. Chang, J. H. Wolfram, R. Rogers and A. H. Goldstein, 1992. Cloning of an Erwinia carotovora gene necessary for gluconic acid production and enhanced mineral phosphate solubilization in Escherichia coli HB101: Nucleotide sequence and probable involvement in biosynthesis of the coenzyme pyrroloquinoline quinone, J. Bacteriol. 174:5814–5819.
r-76. Ludwig-Müller J., 2000. Indole-3-butyric acid in plant growth and development. Plant Growth Regulation. 32: 219–230.
r-77. Luo, A.C., X. Sun and U. S. Zhang. 1993. Species of insoluble Phosphate Solubilizing Bacteria in Rhizosphere and their effect on yield on yield and nutrient uptake of wheat crop. Plant and Soil. 57: 223-230.
r-78. McGrath J. W., F. Hammerschmidt and J. P. Quinn, 1998. Biodegradation of phosphonomycin by Rhizobium huakuii PMY1. Appl. Environ. Microbiol. 64:356–58.
r-79. McGrath J. W., G. B. Wisdom, G. McMullan, M. J. Lrakin, J. P. Quinn, 1995. The purification and properties of phosphonoacetate hydrolase, a novel carbon-phosphorus bond-cleaving enzyme from Pseudomonas fluorescens 23F. Eur J Biochem. 234:225–30.
r-80.
r-81. Morris, C. J., F. Biville, E. Turlin, E. Lee, K. Ellermann, W. H. Fan, R. Ramamoorthi, , A. L. Springer and M. E. Lidstrom,1994. Isolation, phenotypic characterization and complementation analysis of mutants in ethylobacterium extorquensAM1unable to synthesize pyrroloquinoline quinone and sequence of pqqD, pqqG, and pqqC. J. Bacteriol. 176:1746-1755.
r-82. Netik, A., N. V. Torres, J. M. Riol and C. P. Kubicek, 1997. Uptake and export of citric acid by Aspergillus niger is reciprocally regulated by manganese ions. Biochim. Biophys. Acta. 1326: 287-294.
r-83.
r-84. O’Sullivan D. J. and F. O’Gara, 1992. Traits of fluorescent Pseudomonas sp. involved in suppression of plant root pathogens. Microbiol. Rev. 56:662–676.
r-85. Ohtake, H., H. Wu, K. Imazu, Y. Ambe, J. Kato and A. Kuroda, 1996. Bacterial phosphonate degradation, phosphite oxidation and polyphosphate accumulation. A Res. Conserv and Recycling. 18:125–34.
r-86. Okon, Y., 1985. Azospirilum as a potential inoculant for agriculture trends. Biotechnol. 3:223-228
r-87. Pal, S. S., 1998. Interaction of an acid tolerant strain of phosphate solubilizing bacteria with a few acid tolerant crops. Plant Soil. 198:169–177
r-88. Parks, E. J., G. J. Olson, F. E. Brinckman and F. Baldi, 1990. Characterization by high performance liquid chromatography (HPLC) of solubilization of phosphorus in iron ore by a fungus. J. Ind. Microbiol.5:183-190.
r-89. Peix, A., A.A. Rivas-Boyero, P. F. Mateos, C. Rodirguez-Barrueco, E. Martinez-Molina and E. Velazquez, 2001. Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biol. Biochem. 33: 103–110.
r-90. Peix, A., P. F. Mateos, C. Rodrı´ guez-Barrueco, E. Martı´ nez-Molina and E. Vela´ zquez, 2001b. Growth promotion of common bean (Phaseolus vulgaris L.) by a strain of Burkholderia cepacia under growth chamber conditions. Soil Biol. Biochem.33: 1927–1935.
r-91. Postma, J., M. Montanari and P. H. J. F. van den Boogert, 2003. Microbial enrichment to enhance the disease suppressive activity of compost. Eur. J. Soil Biol. 39:157–160.
r-92. Paul, E. A and F. E. Clark, 1988. Soil Microbiology and Biochemistry. San Diego, CA: Academic Press.
r-93. Peix, A., A.A. Rivas-Boyero, P. F. Mateos, C. Rodirguez-Barrueco, E. Martinez-Molina and E. Velazquez, 2001. Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biol. Biochem. 33: 103–110.
r-94. Puente, M. E., Y. Bashan, C.Y. Li and V. K. Lebsky, 2004. Microbial populations and activities in the rhizoplane of rock weathering desert plants root colonization and weathering of igneous rocks. Plant Biol. 6:629-642.
r-95. Ramamoorthy, V., R. Viswanathan, T. Raguchander, V. Prakasam and R. Samiyappan, 2001. Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases, Crop Prot. 20: 1–11.
r-96. Ranjan, R., S. S. Purohit and V. Prasad, 2003. Plant hormones: Action and Applications published Agrobios India.15-22.
r-97. Ramamoorthi, R. and E. L. Mary, 1995. Transcriptional Analysis of pqqD and Study of the Regulation of Pyrroloquinoline Quinone Biosynt hesis in Methylobacterium extorquens AM1. J. Bacteriol. 206–211.
r-98. Ramamoorthy, V., R. Viswanathan, T. Raguchander, V. Prakasam and R. Samiyappan, 2001. Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases, Crop Prot. 20: 1–11.
r-99. Ranjan, R., S. S. Purohit and V. Prasad, 2003. Plant hormones: Action and Applications published Agrobios India.15-22.
r-100. Rodriguez, H., T. Gonzalez, I. Goire and Y. Bashan, 2004. Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp. Naturwissenschaften. 91:552–555.
r-101. Reyes, I., L. Bernier, R. Simard, and H. Antoun, 1999. Effect of nitrogen source on solubilization of different inorganic phosphates by bacterial strain of Pencillium rugulosum and two UVinduced mutants. FEMS Microbiol. Ecol. 28:281–290.
r-102. Richardson, A. E., 1994. Soil microorganisms and phosphorous availability. In Soil Biota: Management in Sustainable Farming Systems. Eds. CE Pankhurst, BM Doube and VVSR Gupta. CSIRO, Victoria, Australia.
r-103. Richardson, A.E., P. A. Hadobas, J. E. Hayes, C. P. O'Hara, and R. J. Simpson, 2001. Utilization of phosphorus by pasture plants supplied with myo-inositol hexaphosphate is enhanced by the presence of soil microorganisms. Plant Soil. 229: 47-56.
r-104. Rodríguez H., T. Gonzalez and G. Selman, 2000. Expression of a mineral phosphate solubilizing gene from Erwinia herbicola in two rhizobacterial strains. J. Biotechnol. 84: 155–161.
r-105. Rodríguez, H and R. Fraga., 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Advances. 17: 319–339.
r-106. Rodríguez H, G. M. Rossolini, T. Gonzalez, J. Li, R. Bernard, 2006. Isolation of a Gene from Burkholderia cepacia IS-16 encoding a protein that facilitates phosphatase activity. Current Microbiology. 40:362–366.
r-107. Rossolini, G. M., S. Shippa, M. L. Riccio, F. Berlutti, L. E. Macaskie and M. C. Thaller, 1998. Bacterial nonspecific acid phosphatases: physiology, evolution and use as tools in microbial biotechnology. Cell Mol. Life Sci. 54:833–50.
r-108. Shekhar, N. C., S. Bhaclauriay, P. Kumar, H. Lal, R. Mondal and D. Verma, 2000. Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol. Lett. 182:291–296.
r-109. Sarawgi, S. K., P. K. Tiwari and R. S. Tripathi, 1999. Uptake and balance sheet of nitrogen and phosphorus in gram (Cicer arietinum) as influenced by phosphorus, biofertilizers and micronutrients under rainfed condition. Indian J. Agron. 44: 768–772.
r-110. Schnider, U., C. Keel, , C. Voisard, , G. Defago, and D. Haas, 1995. Tn5-directed cloning of pqq genes from Pseudomonas fluorescens CHA0: mutational inactivation of the genes results in overproduction of the antibiotic pyoluteorin. Appl. Environ. Microbiol. 61: 3856-3864
r-111. Shekhar, N. C., S. Bhaclauriay, P. Kumar, H. Lal, R. Mondal and D. Verma, 2000. Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol. Lett. 182:291–296.
r-112. Sigler, K. and M. Hofer, 1991. Mechanisms of acid extrusion in yeast. Biochem. Biophys. Acta. 1017:375-391.
r-113. Sperber, J. I., 1958. Solution of apatite by soil microorganisms producing organic acids. Aust. J. Agric. Res. 9: 782-787.
r-114. Sundara, B., V. Natarajan and K. Hari, 2002. Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields. Field Crops Res. 77: 43–49.
r-115. Subba-Rao, N. S., 1993. Biofertilizers in Agriculture and Forestry, Oxford and IBH Publishing Co. Pvt. Ltd. New Delhi
r-116. Sudhakara, R. M., S. Kumar, K. Babita and M. S. Reddy, 2002. Biosolubilization of poorly soluble rock phosphates by Aspergillus tubingensis and Aspergillus niger. Bioresour. Technol. 84: 187–189.
r-117. Taha S. M., S. A. Z. Mahmoud, A. H. El-Damaty and A. M. A. El-Hafeg, 1969. Activity of phosphate-dissolving bacteria in Egyptian soils. Plant Soil. 31:149-160.
r-118. Taiz, L. and E. Zeiger, 1998. Plant physiology, 2nd ed. Sinauer Associates, Inc., Sunderland, Mass.
r-119. Tilak, K.V.B.R., N. Ranganayaki1, K. K. Pal, R. De, A. K. Saxena, C. S. Nautiyal, S. Mittal, A. K. Tripathi and B. N. Johri, 2005. Diversity of plant growth and soil health supporting bacteria. Current Science. 89: 136.
r-120. Toro, L., F. Vegli, M. Terreri, C. Ercole, A. Lepidi, 1993. Manganese bioleaching from pyrolusite: Bacterial properties reliable for the process .FEMS Microbiology Reviews. 11: 103-108.
r-121. Toro, N., R. Azco´ n and J. M. Barea, 1997. Improvement of arbuscular mycorrhiza development by inoculation of soil with phosphate-solubilizing rhizobacteria to improve rock phosphate bioavailability (32P) and nutrient cycling. Appl. Environ. Microbiol. 63: 4408–4412.
r-122. Tomar, R. K. S., K. N. Namdeo and J. S. Ranghu, 1996. Efficacy of phosphatesolubilizing bacteria biofertilizers with phosphorus on growth and yield of gram (Cicer arietinum). Indian J. Agron. 41: 412–415.
r-123. Uzair, B. and N. Ahmed, 2006. Screening of phytate hydrolyzing marine bacteria isolated from Balochistan coast. J. of Basic. Appl. Sci. 3: 19-23.
r-124. Van Schie, B. J., O. H. De Mooy, J. D. Linton, J. P. Van Dijken and J. G. Kuenen, 1987. PQQ-dependent production of gluconic acid by Acinetobacter, Agrobacterium and Rhizobium species. J. Gen. Microbiol. 133: 867–875.
r-125. Velterop, J. S., 1995. The biosynthesis of PQQ in Klebsiella pneumoniae. PhD thesis, University of Amsterdam.
r-126.
r-127. Viverk, K. and K. P. Singh, 2001. Enriching vermicompost by nitrogen fixing and phosphate solubilizing bacteria. Bioresour. Technol. 76:
r-128. Van Kleef, M. A. G. and J. A. Duine, 1988. L-tyrosine is the precursor of PQQ biosynthesis in Hyphomicrobium X. FEBS Lett. 237:91–97.
r-129. Villegas, J. and J. A. Fortin, 2001. Phosphorus solubilization and pH changes as a result of the interaction between soil bacteria and arbuscular mycorrhizal fungi on a medium containing NH4
+ as nitrogen source. Can. J. Bot. 79: 865-870.
r-130. Van Schie, B. J., O. H. De Mooy, J. D. Linton, J. P. Van Dijken and J. G. Kuenen, 1987. PQQ-dependent production of gluconic acid by Acinetobacter, Agrobacterium and Rhizobium species. J. Gen. Microbiol. 133: 867–875.
r-131. Wiesman, Z., R. Joseph and E. Epstein, 1989. Characterization and Rooting Ability of Indole-3-Butyric Acid Conjugates Formed during Rooting of Mung Bean Cuttings. Plant Physiol. 91:1080-1084.
r-132. Welbaum, G., A.V. Sturz, Z. Dong, and J. Nowak. 2004., Fertilizing soil microorganisms to improve productivity of agroecosystems. Crit. Rev. Plant Sci. 23:175–193.
r-133. Welch, S. A., A. E. Taunton and J. F. Banfield, 2002. Effect of microorganisms and microbial metabolites on apatite dissolution. Geomicrobiol. J. 19: 343-367.
r-134. Whitelaw, Ma., 2000. Growth promotion of plants inoculated with phosphate-solubilizing fungi. Adv. Agron. 69: 100-151.
r-135. Yamada, M., K. Sumi, , K. Matsushita, , O. Adachi and Y. Yamada, 1993. Topological analysis of quinoprotein glucose dehydrogenase in Escherichia coli and its ubiquinone-binding site. J. Biol. Chem. 268: 12812-12817
r-136. Yang, Y. and D. F. Klessig, 1996. Isolation and characterization of a tobacco mosaic virus inducible Myboncogene homolog from tobacco .Proc. Natl. Acad. Sci. USA. 93:14972-14977.
r-137. Young, C. C., T. C. Juanag, H. Y. Guo, 1986. Vesiculararbuscular mycorrhiza inoculation on soybean yield and mineral phosphorus utilization in subtropical–tropical Soils. Plant Soil. 95: 245–254.
r-138. Young, C. C., 1990. Effects of phosphorus-solubilizing bacteria and vesicular arbuscular mycorrhizal fungi on the growth of tree species in subtropical tropical soils. Soil Sci. Plant Nutri. 36:225– 231.
r-139. Zehnder, G. W., J. F. Murphy, E. J. Sikora and J. W. Kloepper, 2001. Application of rhizobacteria for induced resistance. Eur. J. Plant Pathol. 107: 39-50