Scarhole Auto Project

Joined
Jan 1, 2013
Messages
642
Reputation
70
Reaction score
122
Points
0
Hello AutoFlower Network.
My Name is scarhole, I'm a amateur breeder an collector of seeds
I'm starting a project for Auto fems.
This seems like the best medicine to give folks just starting out.


I started with STS and a single DinaFem Amnesia Auto.
She was the 2nd best weed I grew this year!
No othe auto I've smoked compaired.
View attachment 161693

Dinafem Amnesia haze auto (Sts reversed for pollen) x Nev haze 21/Mulimbimby Madnessis female my F1 cross AHAxNH21. I hope this first cross will speed up the Long flowering nh21xMm Without adding indica into her Swerve style. (Geneticist say ruderallis is a sativa)
These seeds are still on the plant so I have awhile before I play with this one


I also made some DrGt C99 reversed male x Amnesia Haze Auto as the female.
C99xAHA will be the first project.
The c99 Is pineapple as hell an the AHA is very butterscotchy.
This F1 should be realy fast an tasty!

I still have AHA fem pollen frozen I will use to keep adding auto into things.
The next batch f2 will be AHA xAHA/C99 should be Enuff to get autos sometimes.
Then ill prolly reverse some AhA x C99 fem pollen to hit on the AHAxAHA/C99 to beef up the c99 in her for the F3.
Next ill keep back crossing her with some of the off spring that is passing down the auto trait tell I get to f6 an have a stable auto again.

I need to go look up the Punnant square an probability ratios for each step.
I assume this should be pretty straight forward using Mr Souls method for selecting traits.
 
Last edited:
Soul's Selecting breeding individuals for marijuana production
Added by: Bongaloid
Last edited by: ~shabang~
Viewed: 3297 times
Contributed by MrSoul:


Breeding fine cannabis involves carefully choosing the breeding stock. To choose wisely we must first define male and female cannabis:

Female Cannabis


Contributed by British Columbia Grower's Association:

In this first situation, we'll deal with the situation where a plant breeder finds a special individual or clone.

It's a natural thing to be curious and cross a couple of plants that catch your fancy. Grow them out and find a new variation that you like even better. We can preserve the new variation through cloning indefinately, but accidents happen and clones die. They can get viruses or can suffer clonal deprivation from somatic mutations over time. Plus it's harder to share clones with friends through the mail than seeds. So it's only natural that we would want to create seed backups of this special clone.

But before we start breeding this clone, we should try and figure what exactly it is we want from the seeds we are going to create. Do we want them to simply be able to reproduce individuals like the special clone? Simple backcrossing (cubing) will accomplish this. Or do we want to to create seeds that will be able to create more seeds like the special clone, a true breeding strain? These are very different in nature. You see, chances are that your special clone will be heterozygous for many of traits she phenotypically expresses. This just means that she will contain genetic information (genes) for two opposing triats, but you can only see one, the dominant one. However, her seeds will only get one or the other of the genes, so her offspring will express all the genetic information she has, including what you can't see within herself. If you want to create a true breeding strain, you need to preserve all the genes you can see, and remove all the genes that you cannot, but may show up in the offspring. Creating homozygosity. The only way to accomplish this is through selection and generational inbreeding (selecting the homozygous offspring to be parents for the next generation).


BackCrossing and Cubing

Backcrossing is where you breed an individual (your special clone) with it's progeny. Sick in our world, but plants seem to like it

1) Your first backcross is just a backcross.

2) Your second backcross where you take the progeny from the first backcross and cross back to the SAME parent (grandparent now) is often called SQUARING by plant breeders.

3) Your third backcross where you take the progency (squared) from the second backcross and cross back to the SAME parent (great grandparent now) is often called CUBING by plant breeders. You can continue the backcrossing but we just call this backcrossing. Cubing is in reference to the number three, as in 3 backcrosses

Cubing works on the basis of mathamatical probabilities with respect to gene frequencies. The more males you use with each cross, the better the chance that your reality matches the theory. In theory, with the first backcross, 75% of your genepool will match the genepool of the P1 parent being cubed. Squaring increases this to 87.5% and cubing increases it to 93.75%. You can arrive at these numbers by taking the average between the two parents making up the cross. For instance, you start by crossing the P1 mom (100%) with and unrelated male (0%) getting 100% + 0% divided by 2 = 50%. Therefore, the offspring of this first cross are loosly thought of as being 50% like the mom. Take these and do your first backcross and you get 100% (mom) + 50% divided by 2 = 75%. And this is where we get the 75% for the first backcross. Same thing applies as you do more backcrosses. As you will see later, you can apply this same probability math to specific genes or traits, and this can have a dramatic effect on your methodology and selection methods.

Your selection of the right males for each backcross are the crucial points for success with this technique. In each case, you could select males that contain the genes you want, or you could inadvertedly pick those individuals that carry the unwanted recessive genes. Or more likely, you could just pick individuals that are heterozygous for both genes like the P1 mom being backcrossed. The easiest way to deal with this is to start by only looking at one gene and one trait, like lets assume that flavour is determined by a single gene (in reality it's probably not). And do some punnet squares to show gene frequencies through 3 generations of backcrossing. Now lets assume that we found a special pineapple flavoured individual in our pine flavoured population that we wanted to keep. The gene causing the pineapple flavour could be dominant or recessive and the selection abilities and cubing outcome will be different in both cases.

a) pineapple flavour is dominant.

P = pineapple flavour and p = pine flavour

Therefore since each individual will have two flavour genes paired up, the possible genotypes are PP, Pp, and pp. Since P is dominant, PP and Pp will express pineapple flavour while pp will exhibit pine flavour, these are their phenotypes. Now since the pineapple is a new flavour, chances are that the special individual will be heterozygous, or more specifically, Pp. Therefore, the only possible parent combination is Pp X pp with the Pp being the parent to be cubed.

Figure 1. The F1 cross



Now most will find it tough to pick males with the gene for pineapple flavour since males don't produce female flowers. Therefore, they will select males randomly and blindly with respect to this trait. The ratio of P to p genes of the male F1 generation to be used in the first backcross will be 2:6. Another way to look at it is to say that the P gene fequency is 25%. This means that one out of four pollen grains will contain the gene for pineapple flavour. Here is how this plays out in the first backcross.

Figure 2. The B1 cross



Now it's this first backcross that first creates an individual that is homozygous (PP) for the pineapple flavour. However, again because of our limited selection abilities, we choose males randomly. From the random males we should expect three out of eight pollen grains to to contain the gene for pineapple flavour. The P1 female will still contribute one P gene for every p gene. I'll spare your computor's memory and and not post the table, feel free to do it yorself though on paper to be sure you understand what happening


The second backcross (Squaring) will produce the following:

3 PP 8 Pp 5 pp

Therefore, 68.75% will have pineapple flavour and 31.25% will have pine flavour. The frequency of the P gene has risen to 7/16 or 43.75%.

And finally, the third backcross (Cubing) will net the following genotypic ratios:

7PP 16Pp 9pp

Therefore, 71.875% will have pineapple flavour after cubing has been completed. Roughly 22% (7/32*100) of the cubed progeny will be true breeding for the pineapple flavour. The frequency of the P gene has risen to roughly 47% (30/64).

In conclusion, if the backcrossing continued indefinately with random selection of males and with large enough of a population size, the frequency of the P gene would max out at 50%. This means that the best that can be expected from cubing is 25% true breeding for pineapple flavour and 75% that will display the pineapple flavour. You would never be rid of the 25% that would maintain the pine flavour. This model would hold true when trying to cube any heterozygous trait.



b) Pineapple flavour is recessive

In this case, P is for the pine flavour and p is for pineapple flavour. Convention is that the capital letter signifies dominance. For the breeder to have noticed the interesting trait, the mom to be cubed would have to be homozygous for the pineapple flavour (pp). Depending where the male came from and whether it was related, it could be Pp or PP, with PP being more likely. It won't make much difference which in the outcome.

F1 cross is pretty basic, we'll skip the diagram. We simply cross the female (pp) with the male (PP) and get offspring that are all Pp. Since the pine flavour is recessive, none of the F1 offspring will have pineapple flavour (hint ). However, the frequency of the gene p will be 50%.

pp X PP = Pp + Pp + Pp + Pp

Since the F1 generation are all the same (Pp), the pollen it donates to the first backcross will contain a p gene for every P gene. The first backcross will be:

B1 = pp X Pp = Pp + Pp + pp + pp

As you can see, 50% of the offspring will be pineapple flavoured and the frequency of the p gene is 6/8 or 75%. This B1 generation will generate pollen containing 6 p genes for every 2 P genes.


Figure 3. The second backcross.



As you can see, the second backcross or squaring produces pineapple flavour in 75% of the offspring. And the p gene frequency within those offspring is roughly 88%. (Remember C88 ). Of the pollen grains from this squaring, 14 out of 16 will carry the p gene for pineapple flavouring. When they are backcrossed to the P1 mom for the third time, they net the following cubed progeny:


Figure 4. The third backcross



After cubing of a homozygous gene pair, we end up with roughly 88% of them displaying the desired trait (pineapple flavour in this case) and also being true breeding for that same trait. The frequency of this desired gene will be roughly 94%. If the backcrossing was to continue indefinately, the gene frequency would continue to approach 100% but never entirely get there.


It should be noted that the above examples assume no selective pressure and large enough population sizes to ensure random matings. As the number of males used in each generation decreases, the greater the selective pressure whether intended or not. The significance of a breeding population size and selective pressure is much greater when the traits to be cubed are heterozygous. And most importantly, the above examples only take into account for a single gene pair.

In reality, most of the traits we select for like potency are influenced by several traits. Then the math gets more complicated if you want to figure out the success rate of a cubing project. Generally speaking, you multiply the probabilities of achieving each trait against each other. For example, if your pineapple trait was influenced by 2 seperate recessive genes, then you would multiply 87.5% * 87.5% (.875 * .875 *100) and get 76.6%. This means that 76.6% of the offspring would be pineapple flavoured. Now lets say the pineapple trait is influenced by 2 recessive traits and and a heterozygous dominant one. We would multiply 87.5% by 87.5% by 71.9% (.875*.875*.719*100) and get 55%. Just by increasing to three genes, we have decreased the number of cubed offspring having pineapple flavouring down to 55%. Therefore, cubing is a good technique where you want to increase the frequency of a few genes (this is an important point to remember ), but as the project increases, the chance of success decreases .... at least without some level of selective pressure.


Applying the pressure

The best way to significantly increase your chances of success is to apply intended selective pressure and eliminate unintentional selective pressure. Try to find clearcut and efficient ways to isolate and select for and against certain traits. Find ways to be sure your males are passing along the intended traits and remove all males that do not. This includes ALL traits that may be selected for. Some traits you will be able to observe directly in the males. Other traits like flowering duration you may not. If you are selecting for a trait you can't directly observe, you want to do some progeny tests and determine which males pass on the most desireable genes. I'll explain more on progeny tests later.

It's important that when chosing your best males to ignore the superficial traits having nothing to do with the real traits your looking for. You see, cannabis has several thousand genes residing on just 10 chromosome pairs or 20 individual chromosomes. Therefore each chomosome contains hundred of genes. Each gene residing on the same chromosome is said to be linked to each other. Generally speaking, they travel as a group . If you select for one of them, you are actually selecting for all of the traits on the chromosome. There is an exception to this rule refferred to as breaking linked genes via crossing over, but for simplicity sake, we will ignore that for now. Getting back to selection, you could decide to select for a trait such as you like the spikey look of the leaves while really being interested in fixing the grapefruit flavour. But as it may happen, both traits may be on the same chromosome pair but opposite chromosomes. If so, as long as you select the plants with spikey leaves, you will never get the grapefruit flavour you really want. It's good to keep in mind that each time you select for a triat, you are selecting against several hundred genes This is why most serious breeders learn to take small methodical steps and work on one or two traits at a time. Especially with inbreeding projects such as selfing and backcrossing.

Now lets see what kind of improvements we can make in the first example of trying to cube a heterozygous dominant trait using some selective pressure. Lets say that with each generation, we are able to remove the individuals recessive for the pine flavour (pp), but can't remove the heterozygous ones (Pp). If you recall, our P1 mom had the genotype (Pp) in that model and the F1 cross yielded (Pp + Pp + pp + pp) as possible offspring combinations. We remove the two (pp) individuals leaving us with only Pp. Therefore our first backcross will be:

Pp * Pp = PP + Pp + Pp + pp

Again we remove the pp individual leaving us with PP + 2Pp. Going into the second backcross we have increased our P gene frequency from 37.5% up to 66.7%. This means that going into the second backcross 4 of every six pollen grains will carry the P gene. The outcome is as follows



As you can see, after selecting against the homozygous recessives for 2 backcrosses, we have increased our P gene frequency to 58% from 44% in our squared population. If we again remove the homozygous recessives, our gene frequency increases to 70% (14/20) going into the third backcross, meaning that 7 out of 10 pollen grains will carry the P gene. Again, I'll spare your PC's memory and just give your the results of the third backcross.

B3 cross = 7 PP + 10 Pp + 3 pp

This translates to mean that 95% of the progeny will taste like pineapple after cubing a heterozygous dominant strain if the homozygous pine tasting ones are removed prior to to each backcross. This is an improvent from 72% when no selection occurred. The frequency of individuals true breeding for the pineapple flavour rose to 35%. But more importantly, the P gene frequency improves to 60%. This will be an important consideration when we discuss progeny testing .
But for now lets recap the percentage of individuals true breeding for the pineapple taste in each of the models. In the case where the pineapple flavour trait is heterozygous dominant and no selective pressure is used, cubing produced 22% true breeding individuals. By selecting against the homozygous pine recessive, we were able to increase this too 35%. And finally, when cubing a homozygous recessive gene, we are able to achieve a cubed population that is 87.5% true breeding for the pineapple flavour. And as I pointed out earlier, these numbers only apply to single gene traits. Lets say the pineapple flavour is coded by two seperate genes, one dominant and one recessive, and you are able to select against the homozygous recessive pine flavour while selecting for the dominant pineapple flavour gene. Your cubed population would then contain 87.5% * 35% (.875 * .35 * 100) = 30% true breeding individuals. As you can see, as long as the cubed source is heterozygous, it doesn't matter how many backcrosses you do, you will never achieve a true breeding strain.
 
well you've come to the rite place SCARHOLE! welcome to afn!!!
 
I prefer to use STS after wasting a year playing with CS.
STS never fails to get the pollen flying.
My method is based on Rob Clarke's method.
Exept I use a mix of 1:1 instead of 1:6.
The links to the chems work.
ATTENTION!!! ALWAYS ORDER SEPARATELY FROM TWO DIFFERENT SOURCES!!! YOU HAVE BEEN NOTIFIED

The following is a safe, inexpensive, and successful method for reversing the sex of female cannabis plants. Individual plant responses may vary based upon strain, but I can verify that this process is fully effective in stimulating profuse staminate flower production.

This process can be used to:
A: create new feminized seeds from solitary prize mothers that you currently have
B: create interesting feminized-seed hybrids from different prize strains that you currently have
C: create feminized seeds for optimum outdoor use
D: accelerate the "interview" phase of cultivation, in searching for interesting new clone-mothers
E: reduce total plant numbers- great for medical users with severe plant number restrictions
F: increase variety, by helping to create stable feminized seedlines to be used as an alternative to clones[\b]

At the bottom of this post are some specific details about the chemicals used, their safety, their cost, and where to get them.

It is important to educate yourself about cannabis breeding theory and technique prior to using a method like this one. Here is a link to Robert Clarke's "Marijuana Botany", which is a very good reference.

http://planetganja.net/Ebooks/Marijuana Botany.pdf

It is also important to use basic safety precautions when mixing and handling these chemicals, so read the safety data links provided. The risk is similar to mixing and handling chemical fertilizers, and similar handling procedures are sufficient.

Remember: nothing will ever replace good genetics, and some of your bounty should always go back towards the professional cannabis breeders out there... the ones who have worked for many generations to come up with their true-breeding F1 masterpieces. Support professional breeders by buying their seeds. Also, order from Heaven's Stairway. Not that they need a plug from me, but they are very professional and provide very fast service worldwide.

Preparation of STS:
First, a stock solution is made. It consists of two parts (A and B) that are initially mixed separately, then blended together. Part A is ALWAYS mixed into part B while stirring rapidly. Use distilled water; tap water may cause precipitates to form.

Wear gloves while mixing and using these chemicals, and mix and use in a properly ventilated area. A mask will prevent the breathing of any dust, which is caustic. STS is colorless and odorless, and poses minimal health risks if used as described here. (See material safety data sheet links below). Note that silver nitrate and STS can cause brown stains upon drying, so spray over newspaper and avoid spilling.

Part A: 0.5 gram silver nitrate stirred into 500ml distilled water
Part B: 2.5 grams sodium thiosulfate (anhydrous) stirred into 500ml distilled water

The silver nitrate dissolves within 15 seconds. The sodium thiosulfate takes 30-45 seconds to dissolve.

The silver nitrate solution (A) is then mixed into the sodium thiosulfate solution (B) while stirring rapidly. The resulting blend is stock silver thiosulfate solution (STS).

This stock solution is then diluted at a ratio of 1:9 to make a working solution. For example, 100ml of stock STS is added to 900ml of distilled water. This is then sprayed on select female plants.

Both the stock STS and the working solution should be refrigerated after use, as well as the powdered chemicals, to avoid activity loss. Excess working solution can be safely poured down the drain after use (with ample running water) with negligible environmental impact. It's pretty cheap.

Each liter of stock STS will make ten 1-liter batches of working solution of STS. With the minimum amount of base chemicals ordered from Photographer's Formulary (see link below), this means that each 1-liter bottle of working solution STS costs less than 9 cents, and can treat 15-20 mid-sized plants. That's 200 1-liter batches of STS for $18. Note that the distilled water costs far more than the chemicals.

Application:
The STS working solution is sprayed on select female plants until runoff. Do the spraying over newspaper in a separate area from the flower room. You probably won't smell anything, but ventilate anyway. You now have what I call a "F>M plant"; a female plant that will produce male flowers.

After the F>M plant dries move it into 12/12 immediately. This is usually done three to four weeks prior to the date that the target (to be pollinated) plants will be ready to pollinate. Response times may vary slightly depending upon the strain. More specific times can be determined by trial with your own individual strains. In my trials it took 26 days for the first pollen. 30-35 days seems optimum for planning purposes.

So, assuming that a target plant needs 3-4 weeks to produce fully mature seeds, a strain that takes 8 weeks to mature should be moved into flower at about the same time as the female>male plant. A target plant that finishes flowering in 6 weeks needs to be moved into flower later (10 days or so) so that it doesn't finish before the seeds can fully mature.

A seeded individual branch can be left to mature on a plant for a bit longer, while harvesting the other seedless buds if they finish first. Just leave enough leaves on for the plant for it to stay healthy.

Effects:
Within days I noticed a yellowing of the leaves on the F>M plants. This effect persisted for two weeks or so; after this they became green again, except for a few of the larger fans. The plants otherwise seemed healthy. No burning was observed. Growth stopped dead for the first ten days, and then resumed slowly. No stretch was ever seen. After two weeks the F>M plants were obviously forming male flower clusters. Not just a few clusters of balls, but complete male flower tops. One plant still formed some pistillate flowers, but overall it was predominantly male.

It is strange indeed to see an old girlfriend that you know like the back of your hand go through a sex change. I'll admit that things were awkward between us at first.

When the F>M plants look like they may soon open and release pollen, ( 3-1/2 to 4 weeks) move them from the main flower room into another unventilated room or closet with lighting on a 12/12 timer. Don't worry too much about watts per square foot; it will only be temporary.

When the pollen flies, move your target plants into the closet and pollinate.

A more controlled approach is to isolate the F>M plants in a third remote closet (no light is necessary in this one, as they are releasing pollen now and are nearly finished anyway). In this remote other closet the pollen is very carefully collected in a plastic produce bag or newspaper sleeve and then brought back to the lighted closet, where the target plants are now located. If this is done, be careful to not mix pollen types by letting the F>Ms dust each other. Avoid movement, or use yet another closet.

Take special care to not let pollen gather on the outside of this bag- a static charge is sometimes present. Drop small open clusters of blooms inside and then close the bag at the mouth and shake. Important: next, step outside and slowly release the excess air from the bag, collapsing it completely, so that pollen doesn't get released accidently. Point downwind; don't let it get on your hands or clothes.

This collapsed pollinated bag is now very carefully slipped over only one branch and is then tied off tightly at the mouth around the branch stem with a twist tie or tape, sealing the pollen inside. Let the bag inflate slightly with air again before sealing it off, so the branch can breathe. This technique keeps the entire plant from seeding. Agitate the bag a bit after tying it off to distribute the pollen. Don't forget to label the branch so you know which seeds are which. Other branches on this same plant can be hit with different pollen sources.

If no lighted closet is available, the plant can be moved back into the main room, but- be very carefulollen is sneaky. After 4-5 days, the bag is gently removed and the plant completes it's flowering cycle.

Yet another method has worked well for me. I position the target plants in a non-ventilated lighted closet, and then I collect pollen on a piece of mirror or glass. This is then carefully applied to the pistils of one pre-labeled branch by using a very fine watercolor paintbrush. Care is taken to not agitate the branch or the pollen. No sneezing. The plant needs to be in place first; moving it after pollination can shake pollen free and blow this technique.

Regardless of technique, at completion you will have feminized seeds. Let them dry for 2-4 weeks.

About the chemicals:
Silver nitrate is a white crystalline light-sensitive chemical that is commonly used in photography. It is also used in babies' eyes at birth to prevent blindness. It can cause mild skin irritation, and it stains brown. Avoid breathing. I didn't notice any smell or fumes, but ventilation is recommended. Be sure to wash the spray bottle well before you use it elsewhere; better yet: devote a bottle to STS use. A half gram is a surprisingly small amount; it would fit inside a gel capsule.

__________________________________________________ __________________________________________________ ________________________________________

.preparation of silver thiosulfate (sts) solution

silver thiosulfate (sts) is commonly used to block the action of ethylene in plant cell cultures. Ethylene is a hormone that is present in the gaseous state. Ethylene increases during senescence and ripening, and has been shown to increase in plant cell cultures due to wounding or the presence of auxins. Silver nitrate may be used alone to block the action of ethylene but it is not transported as well as sts thus is seldom used alone.

Prepare a 0.1 m sodium thiosulfate (sts) stock solution by dissolving 1.58 g of sodium thiosulfate (product no. S 620) into 100 ml of water. Prepare a 0.1 m silver nitrate stock solution by dissolving 1.7 g of silver nitrate (product no. S 169) into 100 ml of water. Store the stock solution in the dark until needed to prepare the sts.

The sts solution is prepared with a molar ratio between silver and thiosulfate of 1:4, respectively. Nearly all of the silver present in the solution is in the form of [ag (s2o3)2]3-, the active complex for ethylene effect inhibition.
Prepare a 0.02 m sts by slowly pouring 20 ml of 0.1 m silver nitrate stock solution into 80 ml of 0.1 m sodium thiosulfate stock solution. The sts can be stored in the refrigerator for up to a month. However, preparation of the sts just prior to use is recommended.

__________________________________________________ __________________________________________________ ________________________________________

katolickinet.jpg




A SIMPLE SAFE AND INEXPENSIVE FEMMING METHOD

LINKS TO THE CHEMICALS:

sodium thiosulfate

http://www.bhphotovideo.com/c/produc...Anhydrous.html

Silver Nitrate

http://secure.sciencecompany.com/Sil...10g-P6503.aspx


ATTENTION!!! ALWAYS ORDER SEPARATELY FROM TWO DIFFERENT SOURCES!!! YOU HAVE BEEN NOTIFIED
 
Welcome to the site Scar! Good luck with your breeding project, do you have any pictures of your set up?
 
I will cheat in my little project a bit with the reversed AHA pollen.

Secting males is the most difficult step, the only way to tell if a male is passing down traits you like is by growing an testing it's progeny. Witch adds a lot of time.
I have read Nevil Schoenmaker uses Dutch master reverse to make male clones become female for the purpose of glimpsing what that male would look like as a female. Somday I want to learn this method.

But my reversed AHA will not have to be tested this way since I know that the plant that produced the pollen is an Auto and dank as hell. She is ready to start cubing IMHO.
 
Heres the pic of The NH21xMM that i mixed with Amnesia Haze Auto
View attachment 161653

Heres a pic of the "male" i made NH21xMM with STS im curentyly collecting pollen from.
View attachment 161652


It takes along time, an some times the pollen don't fly with Sts.
So I take the pollen sacs off the plant when they yellow and open with tweezers.
They are collected in a large ashtray. When they dry I smash em up an tap on the ashtray to harvest the pollen.
This gets me maximum pollen.
It's just a modified UncleBens Method.


Uncle Ben's pollination method
Added by: 10k Last edited
by: 10k Viewed: 2223 times
Contributed by: Uncle Ben


You have several choices for collecting and using pollen. Males will show as
a football-like "ball" on a small, short petiole (stem) at the node sites. Once
the pollen pods form, they will elongate via a stem, droop, and the flower
bracts will open. After about one week after pollen pods first start to form, or
upon complete opening of the male flower bracts, the male anther's will shed
pollen which will appear as pale, yellow dust.


Males do not take much light to survive once they reach flowering stage.
Leave your male plant(s) in the grow room until the first male pollen bracts
just begin to crack, and then move 'em into another room with a typical 12/12
schedule, this can be simulated with light thru a window or a fluorescent light
fixture.


You have a choice of placing this plant in a very quiet room with no air
movement, set on clean paper, or, you can cut the branches off, making a clean
slanted cut with a razor blade, and place the branches in a vase of water over
paper. Collect the pollen once it begins shedding by placing a glazed ceramic
plate or paper plate under the flowers and gently tap the individual branches.
Pick out any flowers which tend to drop once in a while.


The pollen will be like dust, so don't visit the garden until you have taken
a bath, or you may end up pollinating plants you didn't intend on pollinating.



Collect the pollen over time and place it into a clean vial like a film
canister. I really like using a paper plate held under a group of flowers, and
then gently thumping the stem. After collecting the pollen, the paper plate can
be creased, held over a vial, and the sides and edges thumped until all the
pollen is shaken into the vial. Shape the paper plate like a creased funnel.



For a pollen carrier, heat about 2 or 3 teaspoons of flour in an oven set to
180f for 20 minutes or in a small pot set on low heat, let it cool thoroughly,
and mix with the pollen to dilute it. I use a ratio of about 1/4 teaspoon pollen
to 3 teaspoon flour and have very successful pollination rates. Store in small
containers like contact lens cases or film canister, excluding as much air as
possible and store in the refrigerator for long term use. Remember, it only
takes one male to fertilize one female ovule, and there are millions of pollen
cells in a 1/4 teaspoon of pollen so be sure and dilute it.


Use a small artist brush (my preferred method) or toothpick to pollinate a
few of the lower branches which have fresh, white pistils, label the pollinated
branches, and harvest your seeds in 3 to 6 weeks. I just cure the seeded
branches with the rest of the crop, and tear apart the seeded buds with my
fingers. You'll find the seeds close to the stem. Store the seeds in the fridge
or freezer, labeled of course, with a little dessicant like silica gel or heat
treated (sterilized) rice for long term storage.
View attachment 161651
 
Welcome to the farm Scarhole! :D
 
Im a Cheep as Grower.
View attachment 161683


Gram per Dollar , and guerilla growing are my specialtys.
I will be grown in my lil outdoor cab, 3 ft wide x 2 ft tall x 2 ft deep.
Im using a 150w hps , an a 175 w MH for lighs, an few cfl.
200$ investment in to my growing has kept me in free weed for years.
Heres some old pics of stuff.

View attachment 161681
View attachment 161682

View attachment 161687
View attachment 161688
View attachment 161689

The white reflection is diffused (sending light in every direction) an very week compared to mirrors.
They reflect light everywhere, i want High intesity (specular) reflection so its focused.
I wouldnt put a light diffuser in front of my HID lights?
So why do we put em on out walls?
Well I dont I put up mirrors.

View attachment 161685


Very soon Im going to buy a Better set up.
600w Hps in a tent.
My first grow was in the late 80, I have been growing off an on for ever.
I have never bought anything from a grow store.
But its time to Try how the rest of the world grows an step up my game.
 
Last edited:
Back
Top